
Making Science Interactive:
Enhancing Synthesis and

Collaboration
Qualifying Exam
Caroline Berger

May 2025

1

Hello, today I will talk about my PhD project, making science interactive, enhancing
synthesis and collaboration. This project lies at the intersection of human-computer
interaction, and programming languages. It is supervised by Clemens Klokmose and
Magnus Madsen.

Motivation 2

The way we experience the world matters, and our experience is influenced by
technology and tools. With our bare eyes, when we look up at the moon, it’s an
amorphous white circle.

But, through the lens of a telescope, the moon’s craters become apparent, and we
can discern valleys and edges.

In my work, I aim to develop tools that act as cognitive extensions—enabling
scientists to see and reason in new ways. I want to provide the building materials and
tools that allow a scientist to build their own telescopes, that allows them to further
their scientific discoveries.

Scientific Work

Also Scientific Work

Motivation 3

Nowadays, scientific work is not confined to a lab bench, but it is increasingly reliant
on programming for simulations and data analysis.

Yet, many scientists lack formal training in computer science, and confidence in
programming.

But, the computational tools they use require a high level of technical fluency.

Programming Behaviors

Tasks & Processes

Design Requirements

Theoretical Implications

Approach

4

Broadly, my work is in the domain of programming environments. Computational
noteboos are one example of a programming environments, and research in this area
includes the interface where programming takes place, the accompanying tools, and
the experience from a user’s point of view.

I approach this from a human-centred lens, with special focus on non-software
engineer users.

The different parts of my research build upon each other. Beginning with programming
behaviors

What are the programming behaviors of scientists?

Tasks & Processes

Design Requirements

Theoretical Implications

Year 1 Approach

5

My first research question that I explored during my first year was what are the
programming behaviors of scientists.
This question investigates how scientists—often self-taught or informally trained in
programming—engage with code in their day-to-day work. It seeks to uncover
patterns, challenges, and contextual influences that shape their computational
practices. The question examines the social practices around computing, as well as
the programming behaviors, and stylistic and structural tendencies observed in the
code they write. Later in the talk, I will present findings from this first research
question with scientists.

What are the programming behaviors of scientists?

What scientific tasks and processes could be supported by
extending interaction capabilities?

Design Requirements

Theoretical Implications

Year 1 & 2 Approach

6

While there are many possible avenues to study after learning about programming
behaviors, we chose to scope and focus on interactivity.
We look at the workflows and pain points in scientific inquiry that could benefit from
enhanced interactive capabilities, such as interactive visualizations, responsive
simulations, or direct manipulation of data and models.
I hypothesize that interactivity could facilitate communication, through the extension of
artifacts, and could enhance analysis, helping scientists to uncover patterns,
anomalies, and features of their data. I have partially answered this question, and will
present early findings related to this question later on.

What are the programming behaviors of scientists?

What scientific tasks and processes could be supported by
extending interaction capabilities?

What are the design requirements for tools
that support scientists authoring

interactive elements?

Theoretical Implications

Year 2 & 3 Approach

7

Based on insights into scientific practice, this question aims to derive practical and
technical requirements for programming environments that empower scientists to
create interactive artifacts—without requiring deep software engineering expertise.
Sliders, zoom, and filters are examples of interactive elements.
To better answer this question, I focus my research on one type of scientist:
oceanographers. I have done a bit of work aiming to answer this question, and plan to
drive forward in this direction this summer.

What are the programming behaviors of scientists?

What scientific tasks and processes could be supported by
extending interaction capabilities?

What are the design requirements for tools
that support scientists authoring

interactive elements?

What are the theoretical
implications associated with

scientists authoring interactive
elements?

Year 3 Approach

8

As a final research question, shifting to a higher level of abstraction, I plan to look into
literacy, and propose a framework for how programming, interaction, and visualization
literacy is related for scientists.
Next, I’ll explain my methodological approach and theoretical basis for answering
these questions.

What are the programming behaviors of
scientists?

What scientific tasks and processes could
be supported by extending interaction

capabilities?

What are the design requirements for
tools that support scientists authoring

interactive elements?

What are the theoretical implications
associated with scientists authoring

interactive elements?

Contextual Inquiry
9

I use contextual inquiry to learn about the programming behaviors of scientists and
tasks and processes that could be supported by extending interaction capabilities.

What are the programming behaviors of
scientists?

What scientific tasks and processes could
be supported by extending interaction

capabilities?

What are the design requirements for
tools that support scientists authoring

interactive elements?

What are the theoretical implications
associated with scientists authoring

interactive elements?

Contextual Inquiry

● Observation & interview in-situ
● Heavily tied to context
● Rich & detailed insights (thick data)

10

Contextual inquiry involves observing and interviewing people in their real work
environments. It helps to reveal challenges and workflows that might not show up in
surveys or lab studies.

While it provides rich, detailed insights grounded in real practice, the results can be
hard to generalize since they’re tied to specific contexts and individuals.

What are the programming behaviors of
scientists?

What scientific tasks and processes could
be supported by extending interaction

capabilities?

What are the design requirements for
tools that support scientists authoring

interactive elements?

What are the theoretical implications
associated with scientists authoring

interactive elements?

Participatory Design

Contextual Inquiry
11

In addition to contextual inquiry, I use participatory design, to help us learn about
tasks and processes as well as the design requirements for authoring interactive
elements.

What are the programming behaviors of
scientists?

What scientific tasks and processes could
be supported by extending interaction

capabilities?

What are the design requirements for
tools that support scientists authoring

interactive elements?

What are the theoretical implications
associated with scientists authoring

interactive elements?

Participatory Design

Contextual Inquiry

● Envisioning possible futures
● Human Actors not Human

Factors

12

Participatory design is a collaborative method that involves end-users directly in the
design process, making sure their needs and experiences shape the final product.
Participatory design includes performing activities that encourage participants to
envision possible or alternative futures.

It helps ensure that tools fit real-world workflows by engaging users.

This approach not only leads to more relevant and effective solutions, but also gives
users a sense of ownership, making them more likely to adopt the tool.

Instead of viewing humans as factors in technology design, it mobilizes them into
active participants in technology development.

What are the programming behaviors of
scientists?

What scientific tasks and processes could
be supported by extending interaction

capabilities?

What are the design requirements for
tools that support scientists authoring

interactive elements?

What are the theoretical implications
associated with scientists authoring

interactive elements?

Prototyping

Participatory Design

Contextual Inquiry
13

In addition to working with people, I use prototypes as key tools for exploring and
refining design ideas.

What are the programming behaviors of
scientists?

What scientific tasks and processes could
be supported by extending interaction

capabilities?

What are the design requirements for
tools that support scientists authoring

interactive elements?

What are the theoretical implications
associated with scientists authoring

interactive elements?

Prototyping

Participatory Design

Contextual Inquiry

What are the theoretical implications
associated with scientists authoring

interactive elements?

● Externalization of ideas
● Provoke ideation

14

External prototypes offer new perspectives, stimulate creative thinking, and serve as a
source of inspiration for possible design directions.
By presenting these existing tools to participants, we invite them to engage critically
with ideas that have already been explored, encouraging them to offer insights and
suggest modifications or alternatives to fit tools to their own use cases.
By sharing prototypes during participatory design, mutual learning takes place,
participants get the opportunity to teach researchers about their practice, and learn
about the possibilities.
This process not only enriches our understanding of the participants’ needs but also
allows for a broader exploration of design possibilities in the context of our project.

What are the programming behaviors of
scientists?

What scientific tasks and processes could
be supported by extending interaction

capabilities?

What are the design requirements for
tools that support scientists authoring

interactive elements?

What are the theoretical implications
associated with scientists authoring

interactive elements?

Framework
Development

Prototyping

Participatory Design

Contextual Inquiry
15

In the future, I plan to create a framework connecting literacies.

16

Approach

Specifically, theory has shaped my research questions and explanations of findings,
drawing from thinkers like Winograd and Flores, Heidegger, and chonikine.

These theories emphasize how tools—whether physical or digital—impact scientists'
actions, shaping their understanding and practices.

Approach

Toolnesss of things: Significance
derived from use, not just form
Ecology of things: Element’s
importance derived from whole

17

Here we see a gamel and a hammer, although they are similar in form, their usage
distinguishes one from the other.Informed by Balinese culture, musicians play the
gamelan with a gamel.

The Gamelan is apart of traditions like the Galungan holiday festival, and dancers
perform to the Gamenlan's music at local temples.

For Balinese musicians, the frame of reference and context for what they understand
and experience is personal, and specific to their lifeworld.

Further, the gamel exists in the shared practice of a culture as part of an equipmental
nexus, and gets its significance through its relation to the gamelan.

Each element derives its importance from this whole, referred to in HCI as an ecology
of things.

A scientist's use of technology is deeply influenced by their discipline, lab culture, and
individual experiences. Cognition, the way scientists think and learn, is socially
constructed, situated, and culturally dependent. Heidegger’s concept of "lifeworld"
refers to the personal and cultural context through which scientists engage with
phenomena. The "toolness of things" emerges through the ways scientists interact
with tools, revealing their essence beyond their form.

Tools are part of a larger ecology, where their significance arises from how they’re
used in specific contexts.

https://www.whoi.edu/multimedia/soundscapes/

Approach

Appropriation: Tools being used for another purpose
than their originally intended/designed purpose

18

Appropriating tools is key, as scientists adapt and recontextualize both physical and
digital tools to fit their needs. In the image, I see a physical object being appropriated,
by using the earring post to pop open a sim card tray of a phone.

The earring is designed as a decorative accessory.

However, the user is opening their SIM card tray in order to fulfill a need, like to
change the SIM card, for example.The toolness of the earring is made apparent
through it's appropriated use.

Designing tools for appropriation means understanding how they are personally
adapted by users to resolve challenges, like swapping sim cards. This process mirrors
how digital tools like programming tools are integrated into scientists’ workflows.

Scientific Programming
Scientific output > Programming
performance (Basili et al., 2008)

Code comes from online resources or
colleagues’ code (Nouwens et al., 2020)

Resulting scripts and software are
difficult to maintain due to low
reliability and low comprehensivity
(Morris et al., 2009)

Related Work

Basili et al., "Understanding the High-Performance-Computing Community: A Software Engineer's Perspective," in IEEE Software, vol. 25,
no. 4, July-Aug. 2008, doi: 10.1109/MS.2008.103.
Nouwens et al., “Between Scripts and Applications: Computational Media for the Frontier of Nanoscience,” in CHI `20, doi:
10.1145/3313831.3376287.
Morris et al., “Some challenges facing scientific software developers: The case of molecular biology,” in IEEE International Conference on
e-Science, doi: 10.1109/e-Science.2009.38.
Guo, 2012. Software tools to facilitate research programming. Stanford University.

Guo, 2012

19

Now that I’ve told you about the research questions and my methodological and
theoretical approach, I’d like to tall you about work that has been done in this area.
Luckily I are not the only researchers working on this topic, others have studied the
scientific programming.
For scientists, the scientific value that comes from the software or scripts, is much
more important to them than the programming performance.

The code comes from online resources or colleagues code, and is often in several
languages.

The resulting scripts and software are difficult to maintain due to low reliability and low
comprehensivity.

The process of scientific programming starts with preparation,

then during analysis scripts are edited and executed iteratively.

Scientists then make comparisons, take notes, and hold meetings during reflection,

they will explore alternatives, then might go back to analysis. After iteration, they
might disseminate findings via reports or sharing with their colleagues.

Since we are looking specifically at producing interactive artifacts, we are interested in
learning how the process might change. For example, if making comparisons is more

coupled into the programming process.

Tools to Author Interactivity
Anywidget: authoring
via code - cross
platform (Manz et al.)

Manz et al., anywidget, anywidget.dev/
Vaithilingam et al., “Dynavis: Dynamically synthesized UI
widgets for visualization editing,” in CHI `24 doi:
10.1145/3613904.3642639
Zong et al., 2020. Lyra 2: Designing interactive
visualizations by demonstration. IEEE Transactions on
Visualization and Computer Graphics doi:
10.1109/TVCG.2020.3030367.

Related Work

DynaVis: authoring via
prompts (Vaithilingam
et al.)

Lyra2: authoring via
demonstration (Zong et al.)

20

In terms of tools, there are excellent examples of tools aimed at making authoring
interactivity easier, and more expressive.

Within the space of computational notebooks, where scientists often write code,
Anywidget offers a code-based approach to creating interactive Jupyter widgets,
which can be seamlessly integrated into various computational environments. By
enabling the authoring of custom widgets through Python code, Anywidget allows
scientists to craft interactive elements that are both flexible and portable across
different platforms. This method retains the power and customization potential of
coding while aiming to simplify the process of creating reusable, interactive
components.

DynaVis on the other hand presents an innovative approach by enabling the creation
of dynamic UI widgets based on natural language commands from users

Lyra 2 is an environment which enables people to author interactions by
demonstration.

These tools serve as background and inspiration for my work.

https://doi.ieeecomputersociety.org/10.1109/TVCG.2020.3030367

Progress
Programming Behaviors of

Scientists

Designing for Scientific Tasks and
Processes

Interaction Needs

Year 1 Year 2

21

During the first half of my PhD, I have made progress on three of my research
questions. I used contextual inquiry, participatory design, and prototyping to learn
more about the programming behaviours of scientists, the tasks and processes that
could be better supported with interactivity, and began learning about how to design
for authoring interaction.
Now, I will talk through some of the progress I have made.

Progress

Entomology

Biomedical
science

Marine
science

Physics

Cognitive
science

Bioinformatics

22

Berger, Caroline; Lutze, Matthew; Elmqvist, Niklas; Madsen, Magnus; Klokmose, Clemens
Nylandsted (2024).
Scientists and Code: Programming as a Tool.
PLATEAU Workshop.
https://doi.org/10.1184/R1/25587726.v1

My first project involved nine scientists from diverse fields including physics,
entomology, and bioinformatics. I employed a mixed-methods approach, conducting
interviews with six scientists, and directly observing three scientists while they were
coding, and analyzing one participants’ code repository. The project was small scale
in terms of participants, but included depth and variety by including observation and
code review, and scientists from different disciplines.

The study aimed to answer three central questions: What programming practices do
scientists actually use in their work? How do current tools support those practices?
And importantly, how do these tools sometimes hinder scientific progress? Our
findings offer valuable insights into the computational ecosystem of scientists and
highlight opportunities for better tool design. Our work was reviewed and accepted,
and we presented it at the workshop on the intersection between human-computer
interaction and programming languages last year.

Progress

23

The most significant finding from this research is that scientists fundamentally view
programming as a tool rather than an end product. They prioritize what the program
produces over the quality of the code itself. This means traditional software
engineering best practices are often set aside in favor of getting results.

I observed two common programming approaches. First, scientists frequently rely on
copy-paste programming, borrowing code from documentation, Stack Overflow, and
increasingly, ChatGPT. Second, they manually translate mathematical formulas to
code, which can be tedious and error-prone. Overall, scientists take an experimental
approach to coding, focused on whether the output meets their expectations.

Progress

24

Visualizations play a dual role in scientific computing. First, they serve as tools for
confirmatory analysis, where scientists produce quick, iterative visualizations to verify
their expectations. In one observation, a physicist generated multiple plots in rapid
succession, discarding those that didn't match expected outcomes.

Second, visualizations are essential communication tools. I found what I call
"audience-driven visualization quality" - meaning the fidelity and time invested in
visualizations scale with their intended visibility. A quick plot for personal use might be
rough, while a visualization for publication receives extensive refinement.

This visualization process is deeply iterative. Scientists create visualizations, compare
them to expectations, discard unhelpful ones, and continually refine those that will be
used to communicate findings to colleagues or in publications.

Progress

Lab
● Supervisor requirements
● Peer-to-peer instruction

Individual
● Education
● Interests
● Career goals
● Pay off

25

Despite the collaborative nature of science, programming remains largely an
individual effort. Code sharing does happen among scientists, but typically requires
significant rework to adapt to new contexts. The study found a notable absence of
formal code review practices.

I observed interesting patterns in how scientists appropriate tools. GitHub, for
instance, was perceived quite differently from its intended purpose. Some viewed it as
a publishing platform rather than a version control system. Others saw it as an elusive
but potentially useful tool they hadn't quite figured out how to incorporate into their
workflow.

Tool adoption among scientists is influenced by several factors: personal
considerations like interest and career goals; social factors such as lab culture and
supervisor requirements; and a practical assessment of whether the learning
investment will pay off in their work.

Copy-and-Paste + LLMs → improved code quality
Handwritten equations → code

code 🔄 📈

26

Scientific programming ≠ software engineering

So, scientific programming tools should be different.

Based on our findings, I identified several promising design opportunities. First, since
copy-paste programming is prevalent, tools could better support this workflow by
integrating LLMs to help evaluate code quality or providing accessible static analysis
tools.

Second, given the challenges of translating mathematical formalism to code, new
tools could assist this process - perhaps using computer vision combined with LLMs
to convert handwritten equations directly to efficient code.

Third, I suggest creating intermediaries between code and visualization that support
collaborative editing of outputs while preserving reproducibility.

Finally, there's a clear need for simplified version control alternatives to Git and
GitHub that integrate directly into scientific workflows and support tracking of
ephemeral plots and outputs.

These opportunities highlight how programming tools could better align with scientists'
actual practices rather than imposing software engineering standards that may not
serve their primary goals of scientific discovery.

Progress

27

Following the study with scientists, I created prototypes in collaboration with my
colleague, Marcel to explore how computational tools could better support scientific
tasks.

One key insight from our contextual inquiry was that scientists use programming
mainly as a means to create explanatory visualizations.

So, I set out to design a tool that would lower the barrier to creating charts—while still
allowing customization through code.

The result was QuickCharts, built upon a tool called tldraw.

QuickCharts is meant to be accessible to non-programmers, support fast iteration,
exploratory analysis, and comparative views.

Users add a Dataset panel, AI Transform panel, and Visualization panel to a canvas,
connecting them with arrows. They can draw or write in the AI panel, run the
transform, and get a chart—while also being able to edit the Vega-Lite spec under the
hood.

Originally, AI wasn’t part of the project, but as the landscape changed, we started
integrating AI into our prototypes to enhance flexibility and ease of use. I used
QuickCharts as a thinking tool, but ultimately chose not present it to the scientists
during the workshop as I didn’t want to constrain their thinking by showing them a tool
that too closely corresponded to their needs.

Progress

28

Building on our contextual inquiry and prototyping, the next step was to explore what
tools could be—specifically, what’s needed to help scientists author interactive
elements. This led to a participatory design project with ocean scientists.

In March 2025, I conducted a workshop using the Future Workshop method to explore
the needs of ocean scientists around data visualization. Seven marine biologists from
the Woods Hole Oceanographic Institution participated, including PhD students,
postdocs, and a principal investigator. The workshop was co-facilitated by members of
the MIT Visualization Group.

The session lasted about three hours and progressed through critique, fantasy, and
realization phases. Participants began by identifying their biggest data visualization
challenges, imagined ideal solutions, and finally engaged with working prototypes. I
closed with a hands-on tutorial using Plotly Express, chosen for its popularity among
Python users and strong support for map visualizations.

Progress

“How do I show data for 80
species without watering
down the story?” (P2,
Fisheries PhD Student)

(P7, Post-doc researching
Marine Predators)

29

Participants expressed a range of motivations for visualizing data—some focused on
understanding complex ecological patterns, like Arctic community composition or
microbial diversity in coral reefs. Others aimed to communicate findings to
stakeholders, such as protected area managers.

A common challenge was integrating multidimensional data, such as combining
spatial, depth, and species information into a single visual. Grouping large
datasets—sometimes involving dozens of species—was another key difficulty.
Scientists noted how these grouping decisions can obscure the narrative they’re
trying to tell.

During the critique phase, P7 draws the problem she is having with combining depth
data, environmental variables, and position information.

As one participant put it: ‘How do I show data for 80 species without watering down
the story?’ This tension between detail and clarity was a recurring theme.

Progress

30

tldraw makereal

Here is tldraw, a tool that supports users in creating interfaces using annotations and
designs on a canvas. It has an LLM under the hood to transform user’s prompts and
images into UIs. We showed tldraw to the participants to inspire further
brainstorming.

When shown tldraw, participants responded positively—especially because it allowed
visual editing without coding. One scientists shared frustrations with tools like ggplot2,
where even small tweaks required extensive code.

Moving forward, these insights point us toward building systems that reduce coding
overhead, support multi-layered data exploration, and make it easier for researchers
to share and explain their visuals. The next phase of this project will analyze these
needs in more depth to guide the design of new authoring environments.

Future Work
Programming
Behaviors of

Scientists

Designing for
Scientific Tasks and

Processes

Interaction
Needs

Year 1 Year 2 Year 3

Authoring Interactivity
Environment

Literacies

31

I plan to continue answering the research questions around the environment where
authorship of interactivity takes place, and literacies.

Future Work

https://may-20-prototype.vercel.app/ 32

To do this, I plan to document design ideas from the participatory design workshop
and develop a prototype based on these ideas. I will deploy the prototype to
oceanographers involved in the workshop and gather their feedback on the tool. I
have begun to look at environments that already exist, and have tried to replicate the
scientists use cases within these environments. I have also started to prototype out
ideas, such as a remixed example gallery.

First the user would select a chart and indicate what it is they like about the chart.
Then they would remix a few of them, to be able to customize and further iterate.

Programming Literacy

● Way to learn about everything else (Guzdial, 2022)
● Insight generation opportunities through new respreseation (Disessa, 2001)
● Programming as a medium (Kay, 1995)

Visualization Literacy

● Ability to extract goal directed information from visual display (Boy et al., 2014)
● Understand patterns, trends, and correlations (Börner et al, 2016.)
● Moving "beyond the data" (Curcio, 1987)

Interaction Literacy

● Understanding functional principles (Carolus et al., 2023)
● Control over appearance, behavior, and transitions of visual elements and in

response to actions 34

I plan to work on understanding the relationship between
programming literacy, visulization literacy and interaction literacy for
scientists.

Programming is a way to learn about everything else, including a
way to dive deeper into science, those that are literate in
programming have the opportunity to generate novel insights
through new representation. Gaining a fluency in programming
helps someone to use programming as a medium, akin to writing.

Visulization literacy, on the other hand has to do with extracting
information from a visual display based on one's goals, this
includes making sense of patterns, trends and correlations.
Importantly, high literacy means going beyond the data to making
inferences, predictions, or drawing conclusions.

Interaction literacy is about understanding the functional principles
of a technology as a user, but in our case, it also includes control
over the appearance, behavior, and transitions of a visual elements

and in response to a user’s actions.

Interaction
Literacy

Visualization
Literacy

Programming
Literacy

Future Work

34

Take D3, a highly expressive javascript visulization library. Using D3 requires fluency
in all three forms of literacy. In another dimension, Jupyter interact, while
programmatic is limited in terms of customization.

By learning about the relationship between these literacies I may be able to create
tools that have a low barrier of entry and are expressive.

Publications
Completed
1. Berger, Caroline; Lutze, Matthew; Elmqvist, Niklas; Madsen,

Magnus; Klokmose, Clemens Nylandsted (2024). Scientists and
Code: Programming as a Tool. PLATEAU Workshop.
https://doi.org/10.1184/R1/25587726.v1

Planned
2. Outcomes of work with Oceanographers - CHI 2026
3. Theoretical Contribution - ACM Transactions on

Computer-Human Interaction

35

I have one publication so far, and plan to have two more. One I plan to submit to CHI,
that includes outcomes from the participatory design work with the marine biologists.
For the theoretical contribution, I would like to submit this work to TOCHI.

collaborations

36

In addition to the work pertaining to the project that will contribute to my final thesis, I
have also been involved in collaborations with researchers from my institution, around
Europe, and internationally.

With the MIT Visualization group, I have been working on semi-formal programming
concepts, and have co-authored two workshop papers in this domain.

I have helped mentor a master's student in her research on LLM tools to support
programming.

Following a winter course in Theory in HCI, I worked with PhD students from several
universities around Europe on a manuscript about research-through-design and
crafting as a way to interact with theory.

In collaboration with researchers at my institution and in Russia, I provided subject
matter expertise on qualitative data analysis, and co-authored an article pertaining to
augmented reality.

37

Before I conclude, I would like to highlight the best parts of my PhD so far. My
colleagues, at Aarhus and MIT have been excellent office sharers and beer
accompanyers along with thought partners. And of course DreamCake, a brand new
discovery for me, and arguably one of my favorite parts of living in Denmark. The best
one I have tried so far is served at the cafeteria of the main Aarhus library. This also
has been a good reward for progress.

What are the programming behaviors of scientists?

What scientific tasks and processes could be
supported by extending interaction capabilities?

What are the design requirements
for tools that support scientists
authoring interactive elements?

What are the theoretical
implications associated
with scientists authoring

interactive elements?

Interaction
Literacy

Visualization
Literacy

Programming
Literacy

CAROLINE BERGER
CAROLINE.BERGER@CS.AU.DK

38

My PhD research investigates programming environments specifically designed for
scientists, examining how scientists interact with programming tools in their daily
work. Using theories of tools and situated action, I study the complex relationship
between scientific workflows and the programming environments that support them.

Through contextual inquiry, I observed scientists in their natural work environments to
gathered real-time data on programming behaviors. Complementing this, participatory
design workshops engage scientists in collaboratively ideating features that would
make programming tools more accessible and intuitive for scientific workflows.

Moving forward, I aim to develop a theoretical framework examining the intersection
of visualization, programming, and interaction literacy among scientists. This
framework will inform the design of tools that enable scientists to author interactive
visualizations without requiring extensive programming expertise, ultimately creating
programming environments better tailored to scientific research needs.

Now I am happy to take questions, and to discuss.

mailto:CAROLINE.BERGER@CS.AU.DK

References
Slide 2

● Moon -
https://www.reddit.com/r/space/comments/xtobwp/one_of_the_sharpest_moon_image_i_ev
er_captured/

● Telescope - https://www.livescience.com/space/astronomy/types-of-telescope
Slide 3

● Notebook -
https://datalab.marine.rutgers.edu/2020/10/how-to-share-and-run-python-notebooks/

● Scientist - https://www.whoi.edu/multimedia/dna-detective/
Slide 17

● Gamel - https://www.drumsforschools.com/product/gamelan-beater-gamel-premium/
● Hammer - https://en.lial.biz/ivan-shoe-hammer
● Musicians -

https://www.teachsecondary.com/humanities/view/lesson-plan-ks3-4-music-introducing-ga
melan

● Scientist with tool - https://www.whoi.edu/multimedia/soundscapes/
Slide 18

● Phone - https://www.youtube.com/watch?v=Q_pKlsXA-js
39

https://www.reddit.com/r/space/comments/xtobwp/one_of_the_sharpest_moon_image_i_ever_captured/
https://www.reddit.com/r/space/comments/xtobwp/one_of_the_sharpest_moon_image_i_ever_captured/
https://www.reddit.com/r/space/comments/xtobwp/one_of_the_sharpest_moon_image_i_ever_captured/
https://www.livescience.com/space/astronomy/types-of-telescope
https://datalab.marine.rutgers.edu/2020/10/how-to-share-and-run-python-notebooks/
https://datalab.marine.rutgers.edu/2020/10/how-to-share-and-run-python-notebooks/
https://www.whoi.edu/multimedia/dna-detective/
https://www.drumsforschools.com/product/gamelan-beater-gamel-premium/
https://en.lial.biz/ivan-shoe-hammer
https://www.teachsecondary.com/humanities/view/lesson-plan-ks3-4-music-introducing-gamelan
https://www.teachsecondary.com/humanities/view/lesson-plan-ks3-4-music-introducing-gamelan
https://www.teachsecondary.com/humanities/view/lesson-plan-ks3-4-music-introducing-gamelan
https://www.whoi.edu/multimedia/soundscapes/
https://www.youtube.com/watch?v=Q_pKlsXA-js

References cont.
Slide 19

● Basili et al., "Understanding the High-Performance-Computing Community: A Software
Engineer's Perspective," in IEEE Software, vol. 25, no. 4, July-Aug. 2008, doi: 10.1109/MS.2008.103

● Guo, 2012. Software tools to facilitate research programming. Stanford University.
● Morris et al., “Some challenges facing scientific software developers: The case of molecular

biology,” in IEEE International Conference on e-Science, doi: 10.1109/e-Science.2009.38
● Nouwens et al., “Between Scripts and Applications: Computational Media for the Frontier of

Nanoscience,” in CHI `20, doi: 10.1145/3313831.3376287
Slide 20

● Manz et al., anywidget, anywidget.dev/
● Vaithilingam et al., “Dynavis: Dynamically synthesized UI widgets for visualization editing,” in

CHI `24 doi: 10.1145/3613904.3642639
● Zong et al., 2020. Lyra 2: Designing interactive visualizations by demonstration. IEEE

Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2020.3030367

40

References cont.
Slide 33

● Börner et al. Investigating aspects of data visualization literacy using 20 information
visualizations and 273 science museum visitors. Inf Visual 2016; 15(3): 198–213.

● Boy, Jeremy, et al. "A principled way of assessing visualization literacy." IEEE transactions
on visualization and computer graphics 20.12 (2014): 1963-1972.

● Carolus, Astrid, et al. "Digital interaction literacy model–Conceptualizing competencies for
literate interactions with voice-based AI systems." Computers and Education: Artificial
Intelligence 4 (2023): 100114.

● Curcio, F. (1987). Comprehension of mathematical relationships expressed in graphs.
Journal for Research in Mathematics Education, 18 (5), 382-393.

● diSessa, Andrea A. 2001. Changing Minds. Cambridge, MA: MIT Press.
● Kay, Alan C. 1995. “Computers, Networks and Education.” Scientific American 272 (3): 148–155.
● Mark Guzdial, 2022. "Providing Students with Computational Literacy for Learning About

Everything", Computational Thinking Education in K–12: Artificial Intelligence Literacy and
Physical Computing, Siu-Cheung Kong, Harold Abelson

Slide 34
● Heat map - https://fwdp.shinyapps.io/tm2020/#4_DIET_OVERLAP_AND_TROPHIC_GUILDS
● Network visualization - https://heatherwelch.shinyapps.io/beyond_temperature/

41

https://fwdp.shinyapps.io/tm2020/#4_DIET_OVERLAP_AND_TROPHIC_GUILDS
https://heatherwelch.shinyapps.io/beyond_temperature/

